GPR Clutter Amplitude Processing to Detect Shallow Geological Targets

نویسندگان

  • Victor Salinas
  • Sonia Santos-Assunçao
  • Vega Perez-Gracia
چکیده

The analysis of clutter in A-scans produced by energy randomly scattered in some specific geological structures, provides information about changes in the shallow sedimentary geology. The A-scans are composed by the coherent energy received from reflections on electromagnetic discontinuities and the incoherent waves from the scattering in small heterogeneities. The reflected waves are attenuated as consequence of absorption, geometrical spreading and losses due to reflections and scattering. Therefore, the amplitude of those waves diminishes and at certain two-way travel times becomes on the same magnitude as the background noise in the radargram, mainly produced by the scattering. The amplitude of the mean background noise is higher when the dispersion of the energy increases. Then, the mean amplitude measured in a properly selected time window is a measurement of the amount of the scattered energy and, therefore, a measurement of the increase of scatterers in the ground. This paper presents a simple processing that allows determining the Mean Amplitude of Incoherent Energy (MAEI) for each A-scan, which is represented in front of the position of the trace. This procedure is tested in a field study, in a city built on a sedimentary basin. The basin is crossed by a large number of hidden subterranean streams and paleochannels. The sedimentary structures due to alluvial deposits produce an amount of the random backscattering of the energy that is measured in a time window. The results are compared along the entire radar line, allowing the location of streams and paleochannels. Numerical models were also used in order to compare the synthetic traces with the field radargrams and to test the proposed processing methodology. The results underscore the amount of the MAEI over the streams and also the existence of a surrounding zone where the amplitude is increasing from the average value to the maximum obtained over the structure. Simulations show that this zone does not correspond to any particular geological change but is consequence of the path of the antenna that receives the scattered energy before arriving to the alluvial deposits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel signal processing technique for clutter reduction in GPR measurements of small, shallow land mines

In this paper, a signal processing technique is developed to reduce clutter due to ground bounce in ground penetrating radar (GPR) measurements. This technique is especially useful when a GPR is used to detect subsurface antipersonnel mines. The GPR clutter is modeled using a simple parametric model. Buried mine and clutter contributions are separated through a pair of coupled iterative procedu...

متن کامل

بررسی های باستان شناسی منطقه تپه حصار دامغان با استفاده از مدل سازی پیشرو و وارون داده های رادار نفوذی به زمین

Ground penetrating radar (GPR) method is a non-destructive geophysical method that is used to detect subsurface heterogeneities and also recognition of various shallow targets. In present research, forward and inverse modeling of GPR data applied for archeological study has been made. The study area is Tappeh Hissar, Damghan, in which GPR data along several survey lines have been acquired using...

متن کامل

A subspace decomposition technique to improve GPR imaging of anti-personnel mines

Ground-reßected clutter is often a performance-limiting factor in ground-penetrating radar (GPR) detection of nearsurface targets including anti-personnel mines. When a down-looking antenna is scanned across the surface this reßection produces a strong band in the image, which obscures shallow targets. Imperfections in the system impulse response (e.g., antenna ringing and cable reßections) can...

متن کامل

New Results on Clutter Reduction and Parameter Estimation for Landmine Detection Using Gpr

One of the main problems with the interpretation of GPR data is the strong ground reflection, obscuring signals arriving from just underneath the surface. The strength of this reflection can be reduced by deconvolution. This technique is especially useful when GPR is used to detect buried landmines. Parametric and non parametric time variant estimators are used for clutter characterization. Wav...

متن کامل

Determination of unstable tectonic zones in C–North deposit, Sangan, NE Iran using GPR method: importance of structural geology

Ground Penetrating Radar (GPR) is an effective and practical geophysical imaging tool, with a wide set of applications in geological mapping of subsurface information. This research study aims at determination of the geophysical parameter differences in the subsurface geological structures and construction of a 3D fracture model. GPR and resistivity methods were applied to detect the unstable t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018